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A THEORETICAL STUDY OF 7r-HYDROCARBON-IRON TRICARBONYL 
COMPLEXES 

Jerry Ray DIAS 
Department of Chemistry, University of Missouri, Kansas City, MO 64110, USA 

Abstract 

The molecular orbital parameters for tricarbonyl(tetrahapto-unsamrated-hydrocarbon)iron 
complexes are computed using graph-theoretical methods. The results are in agreement 
with their experimental properties. 

1. Introduction 

Merging the graph-theoretical methods previously developed by the author [ 1-8] 
with the topological Hückel model developed by Mingos [9], one can rapidly compute 
the characterisüc polynomials and eigenvalues of olefin-metal complexes. This leads 
to a facile noncomputer oriented method for obtaining useful Hückel MO para- 
meters. The ease with which these calculations are performed not only facilitates 
our chemical thinking processes, but also provides us with a unique perspective in the 
conceptualization of chemical phenomena. The study of different ways of comparing 
molecules contributes to our better understanding of their chemistry. Herein, we present 
a study of carbonylmetal r/4-olefin complexes using these methods. A structure- 
resonance theory study of these metal complexes has been reported [10]. 

The Mingos model assumes the basis-set orbitals for the zr-electmn calculation 
as being the hydrocarbon polyene p c  orbitals (i.e. unhybridized carbon Pz orbitals) and 
each of the metal e (d  z + Px = 2 e )  and e z ( d  + pe = 2e ) hybrid orbitals (fig. 1). The 
metal and carbon Coulomb integrals ~.a = a m = a) and>~arbon-carbon 2p~r-2pzr and 
the metal-carbon e -2plr  and e -2p~r exchange integrals (/~cc = Dm = fl) are taken to 

xz yz 

be comparable; the effect of electrönegaüvity differences on a m can be introduced as 
an additional refinement later on. The signs of the metal-carbon exchange integrals (/3) 
are chosen to reflect the phase changes in the chosen set of basis orbitals:-fl  is 
associated with a phase change (fig. 1); a single phase change in a cyclic 1r-network is 
a Möbius system [11]. A double phase change acts like a double negative to give a 
"normal cycle". 

These assumptions describe the metal-polyene fragment as being perturbed 
to a negligible extent by the carbonyl groups. Justification for this derives from 
both experimental and theoretical studies [12,13]. The basis orbitals for 
tricarbonyl (r/a- butadiene)iron and tricarbonyl (r/4-cyclobutadiene) iran with their cor- 
responding molecular graphs are depicted in fig. 1. The iron d-p~, and d - p y  hybrid 
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(a) Basis orbitals for Fe(r/4-C4H6)(CO)3 
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(b) Orbital network graph for Fe(r/4-C4H6)(CO)3 
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(d) Orbital network graph for Fe(r/4-C4H4)(CO)3 

(c) Basis orbitals for Fe(r/4-C4H4)(CO)3 

Fig. 1. Basis orbitals and corresponding orbital network graphs 
for Fe(r/4-unsaturated-hydrocarbon)(CO)3 complexes. 

orbitals combine with the organic ligand Pz orbitals to form a three-dimensional de- 
localized electronic network containing N electrons, where N is the total number of 
basis orbitals. The Fe(CO) 3 moiety is characterized by the electronic configuration 
(e)l(ey,)  ~, with its remaining six metal electmns occupying the non-bonding d2, 
d2 2, and d orbitals. Thus, the Fe(CO)3 group contributes two electrons for x - Xy 
metä/'--butadiene bonding. 

In this work, an orbital network graph (fig. 1) is a graph where vertices corre- 
spond to atomic n:-orbitals and edges (lines) connecting the vertices associate the pairs 
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of zr-orbital interactions. It should be noted that orbital network graphs and their corre- 
sponding computed parameters disregard stereochemistry, and the following two orbital 
network graphs for Fe(r/4-C4H6)(CO)3 give identical characterisüc polynomials. 

- !  

Thus, the computed Hückel MO parameters presented herein disregard the molecular 
folding found in 10 and 21 (fig. 2) and the existence of cis and trans isomers found in 
20 to 24 and 30, and the metal basis orbitals can be rotated to give two different but 
energetically equivalent alignments with regard to the butadiene basis orbitals. In 
fig. 2, the site of the tricarbonyliron attachment is indicated by heavy lines. 

2. Determining characteristic polynomiais and eigenvalues with graph theory 

Making use of graph-theoretical methods previously published, one can quickly 
determine the characteristic polynomials and eigenvalues of the tricarbonyliron 
complexes presented in fig. 2. Table 1 gives a glossary of terms and table 2 gives a 
summary of the equations that will be used. The tetrahapto-iron complexes of 
butadiene and cyclobutadiene and compounds 1 to 27 shown in fig. 2 are altemant ~r- 
electronic networks (i.e. contain no odd-sized rings) with bonding/antibonding MO 
energy levels that are paired and that have characteristic polynomials with only even 
terms and a tail coefficient which equals the corrected structure count (CSC = K) to the 
second power. Hemdon's method for determining CSC can be used to obtain the tail 
coefficient a n = + K  2 of the characteristic polynomial of altemant n:-electronic networks 
[10]. The second coefficient a 2 = --q is equal to the negative of the number of cr-bonds 
in the orbital network graph of the metal carbonyl complex molecule. The a 4 and a 6 

coefficients are given by eq. (1) and eq. (2), respectively, in table 2. In the application 
of these latter two, it should be noted that r 4 and r 6 give the algebraic sum of the number 
of tetragonal and hexagonal rings, respectively, where Möbius ring systems are assigned 
negative values. Also, r« and r a represent all combinatorial tetragonal and hexagonal 
circuits, respectively. For example, the octahedron possesses fifteen different tetragonal 
circuits (each of the twelve octahedron edges is central to one tetragonal circuit and each 
of the three pairs of opposing vertices is central to a tetragonal circuit), and the cube has 
sixteen distinct hexagonal circuits (each of the twelve cube edges is central to one 
hexagonal circuit and each of the four pairs of opposing vertices is central to 
a hexagonal circuit). It should be noted that eq. (1) and eq. (3) are valid for all graphs, 
and eq. (2) is valid for all graphs having vertices of degree 3 or less; all the equations 
in table 2 were derived by the author, although some have less general precursors that 
were previously presented in the literature [1-8]. 



J.R. Dias, Study of  ~-hydrocarbon-iron tricarbonyl complexes 1 3 3  

Table 1 

G l o s s a r / o f  terrns 

a,t - four th  coeff ic ient  in the  character is t ic  po lynomia l  

a 6 - s ix th  coeff ic ient  in the character is t ic  po lynomia l  

a ( c t )  - H M O  C o u l o m b  integral  (of  carbon)  

a 3 - n u m b e r  o f  b ranches  on  a tr igonal  r ing 

o~,~ - n u m b e r  o f  branches  on  a te t ragonal  r ing 

B - H M O  e x c h a n g e  integral  

C - cyc le  or  circuit  o f  size n 

d/ - n u m b e r  o f  vert ices  o f  degree  i 

e(i,j) - n u m b e r  o f  edges  wi th  a ver tex  o f  degree  i at one  end  and  a ver tex  o f  

degree  j at the  other  end  

e h - an  edge  o f  we igh t  k 

E - energy  level  or H M O  e igenva lue  

E x - total p ~  energy  

G - a molecu la r  or  i soconjuga te  g raph  

G - a molecu la r  g raph  with a s ingle  we igh ted  ver tex 

G k - a molectf lar  g raph  with a s ingle  we igh ted  edge  

h - the we igh t  o f  a he t e roa tom ver tex  [h = ( ~  - cte)/fl] 
k - the we igh t  o f  an edge  [k = flcx/fl¢c] 
L - l inear  po lycon juga ted  s y s t e m  o f  size n 

N ( N )  - n u m b e r  o f  (carbon a tom) ver t ices  

P(G;X) - character is t ic  polynomäal  o f  a molecu la r  graph  

q - n u m b e r  o f  C - C  t r -bond edges  

r - n u m b e r  o f  r ings  (cycles)  o f  n verfices 

r~ - n u m b e r  o f  combina tor ia l  pairs  o f  tr igonal r ings  

t~ - ver tex 

X - (e-  ct)/fl = graph  e igenva lue  

Z k - cyc les  con ta in ing  edge  k 

To illustrate the use of  the equations in table 2 for generating the characteristic 
polynomials, we will now present the solutions to the graph of  the cube and the orbital 
network graphs of  tricarbonyl(r/4-cyclobutadiene)iron and tricarbonyl(r/4-benzene)iron. 
For the cube graph q = 12, a 4 = 30, a 6 = -28 ,  and K = 3, which gives P(cube;X) 
= X 8 -  12X 6 + 30X 4 - 28X 2 + 9 [14]. For the tricarbonyl(r/4-cyclobutadiene)iron 
molecular graph (fig. 1), N = 6, q = 8, and e(3, 3) = 4. Figure 3 shows all the tetragonal 
and hexagonal circuits for this molecular graph; there are four Möbius and one regular 
tetragonal circuits, and two hexagonal circuits crossing over two negative unit weighted 
edges giving r a = - 4  with o~ 4 = 3, r 4 = 1 with a n = 4, and r 6 = 2. Inputting these 
parameters into eqs. (1), (2), and (3) gives the characterisUc polynomial for tricarbonyl( 774 
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T a b l e  2 

E q u a t i o n s  for  t he  ca l cu l a t i on  o f  cha rac t e r i s t i c  p o l y n o m i a l s  o f  m o l e c u l a r  g r a p h s  

Eq.  no .  E q u a f i o n  

(1) 

(2) 

(3) 

(4) 

(5) 

(6)  

(7) 

(8) 

(9)  

a 4 = (1 /2 ) (q  2 - 9q  + 6 N )  - 2 r  4 - d 1 - d 4 - 3 d  5 - 6de  - . . .  

a 6 = - ( 1 / 6 ) ( q  3 - 2 7 q  2 + 116q )  - N ( 3 q  - 16) - 2 r  6 - e (3 ,  3)  + (q  - 6 ) e (2 ,  1) + (q  - 5 )e (3 ,  1) 

+ 2 ~ ( q  - 4 - a « ) r  4 + r 3 + 4r~ 

P ( G , X )  = X N - q X  N - 2 _ 2 r s X  N - 3 + a 4 X N  - 4 _ [2r5 _ 2 (q  - 3 - a 3 ) r s ]X N  - 5 

+ a 6 X N  - 6 + . . .  

P(G;X) = XP(G - v;X) - hP(G - ~;X) - k2[XP(G - v;X) - P(G;X)] 

for  e d g e / v e r t e x  w e i g h t e d  g r a p h s  

P ( G j : ; X )  = P ( G  t - e~;X) - ~ P ( G «  - ( e t ) ;X)  - 2 k ~ e ( G «  - Z t ; X )  

for  e d g e  w e i g h t e d  g r a p h s  

P ( G o ; X )  = P ( G ; X )  + P ( G  o - Uo;X) 

for  r igh t  m i r r o r - p l a n e  f r a g m e n t  

P ( G  ~ ;X)  = P ( G 1  - % ; X )  - P ( G ~  - (ew) ;X)  + Y . P ( G  ~ - Zr~;X) 

for  the  iden t i ca l  f r a g m e n t s  o f  ve r t ex - cen l z i c  3 - fo ld  g r a p h s  

P ( G e 2 ; X )  = P ( G e 2  - % ; X )  - P ( G e 2  - (ew) ;X)  - ~ P ( G e 2  - Z ; X )  

for  the  iden t i ca l  f r a g m e n t s  o f  r i n g - c e n t r i c  3 - fo ld  g r a p h s  

P(Ln;X) = X P ( L  _ ,;X) - P(L _2;X), where P(Lo;X ) = I and P(L,;X) = X 

cyclobutadiene)iron as P(TCCBI;X)  = X 6 -  8 X  4 -[" 2 0 X  2 - 16; the tail coefficients can 
be verified by using Hemdon's CSC method [10]. Finally, for tricarbonyl(r/4-benzene)imn 
(1 in fig. 2; compare with the orbital network graph in fig. 5), N e = 8, q = 10, and 
e(3, 3) = 3. The metal complex 1 has two Möbius tetragonal rings (r  4 = -2) ,  each having 
three branches ( a  4 = 3) and two Möbius and two regular hexagonal circuits (r 6 = - 2  
+ 2 = 0) gJving P(1 ;X)  = X 8 - 10X 6 + 33X 4 - 37X 2 + 4, where the tail coefficient was 
obtained from the CSC. In this way, all altemant molecular graph_s up to Ne = 6 and all 
al temant molecular graphs with vertices of  degree 3 or less up to Ne = 8 can be solved. 
The solution of  larger molecular graphs requires knowledge of  some eigenvalues via 
embedding or by decomposition per eq. (5) into smaller graphs. 

The determinaüon of  the characteristic polynomial of  a non-altemant metal 
complex is illustrated by 28, which has Ne = 8, q = 10, r 4 = - 2 ,  r s = 1 - 1 - 1 = - 1 ,  
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~l~blus cJ . rcui l :  Höbtus c i r c u t t  ~16btus c i r c u i t  Höb:tus c i r c u t t :  IIUckel c t r c u l t :  

(a) All the tetragonal circuits in Fe(D4-C4HI)(CO)3 are shown by the dashed outlines. 

(b) All the hexagonal circuits in Fe(r/4-C4H4)(CO)3 
are shown by the dashed outlines, 

Fig. 3. All the tetragonal and hexagonal circuits 
(dashed outlines) in Fe(r/4-C4H4)(CO)3. 

r 6 = 1, r 7 = 2, and d~ = 1. Application of eqs. (1) to (3) gives X 8 - 10X 6 + 32X 4 + 2X 3 
- 3 6 X  2 -  6X + 9, where the tail coefficient can be obtained by the method of 
Hemdon [10] and a 7 is the sum of 2C 7 + 2(C» + K 2) graph components with sign 
inversions for Möbius circuits. 

Complexes 1, 6, 8, 10, 11, 13, 16, 17, 19, 21, 24, 25, 28, 29 and 30 have no 
vertices larger than degree 3, and we will outline how to obtain the characterisüc 
polynomial of  some of these complexes. Application of eq. (5) decomposes 6 into 
fragments that are solved per eqs. (1) to (4) to give 

= X  l ° - l l X  8 + 4 1 X  6 - 5 7 X  « +  19X 2 - ( X  8 . 1 0 X  6 + 3 3 X  4 - 3 7 X  2 + 4 )  

= X l° - 12X s + 51X 6 - 90X 4 + 56X 2 - 4. 

The end terms of eq. (5) are zero when one operates on a pendant side chain, as was 
done for 6. Successive decomposition of 11 per eq. (5) gives 
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= ( X  2 - 1 ) ( X  1 ° -  1 2 X  s + 5 0 X  6 - 8 4 X  4 + 4 9 X  2 - 9 )  - ( X  1° - 1 1 X  s + 4 1 X  6 - 5 7 X  4 + 1 9 X  2 )  

- ( X  1° - 1 2 X  s + 5 1 X  6 - 9 0 X  4 + 5 6 X  2 - 4 )  - 2 ( X  6 - 7 X  « + 1 4 X  2 - 6 )  

= X 12 - 1 5 X  1° + 8 5 X  8 - 2 2 8 X  6 + 2 9 4 X  4 - 1 6 1 X  2 + 2 5 .  

Figure 5 summarizes the computation of the characteristic polynomial of 24. 

3. Kekulé and corrected structure count 

While it is weil known that the square root of the tail coefficient to the character- 
istic polynomial of an altemant (bipartite) molecular graph equals the difference in the 
number of structures of positive and negative pariües (CSC), it has also been expliciüy 
recognized that if the tail coefflcient of a characteristic polynomial corresponding to a 
graph has an integral square root, then this value can give the difference in the number 
of structures of positive and negative parities, regardless of whether the graph is 
bipardte or not, under the following conditions. Deletion of a vertex from a non- 
altemant graph to give an odd altemant graph possessing a nonbonding molecular 
orbital (NBMO) can have the unnormalized integral coefficients of this orbital written 
by inspection [10,15]. The difference in the number of structures of positive and 
negative parities (CSC) to the non-altemant graph is given by the algebraic sum of these 
coefficients adjacent to the deleted vertex. The square of this number [a n = +(CSC) 2] 
gives the tail coefficient to the characteristic polynomial of the corresponding non- 
altemant graph (cf. complexes 28-30). Also, the sum of the squares of the unnorma- 
lized integral coefficients to the NBMO of an odd altemant molecular graph equals the 
tail coefficient to the corresponding characteristic polynomial; e.g. G 2 in fig. 4 gives 6 
for the tail coefficient. For totally aromatic molecular graphs, the number of Kekulé 
structures equals the corrected structure count (K = CSC). Herein, we make no 
notational distinction between K and CSC. 

Another method for determining K values of a molecular graph G uses the 
following relationship 

K ( G )  = + K ( G  - e) + K ( G  - (e)) ,  

where G - e is the graph obtained upon deleüon of some edge e, G - (e) is the 
corresponding graph obtained upon deletion of edge e with its associated vertices, and 
the negaüve sign is only chosen to give a positive (or zero) K ( G )  value when e belongs 
to an anti-aromatic ring [16,17]. By knowing a few K values of some small molecular 
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~c-crx-2 
[ ~[ Fe(n4-C4H4)(CO) 3 

4 

I/ x/ 

¢=-+/2, +/2, -+2 

• Fe(n4-C4H6) (C0 h 

¢=-+I.0, -+/3, _+~ 

I vertex 
deletlon 

-i~ Fe(n-allyl) (C0)3 

GI G 2 
~=±½(/~+i) c=+/~, -+,5 

(a) 

= , i _ 1 i - 1 1 _  

(b) 

Fig. 4. Embedding fragments of Fe(r/4-unsaturated-hydrocarbon)(CO)3 complexes. 

(a) Embedding fi'agments. (b) Ethene embedding on Fe(r/4-C4H6)(CO) 3. 

graphs, one can use this relationship to obtain K values for larger molecular graphs. In 
this work, it is worthwhile to remember these values for the tricarbonyliron complexes 
of butadiene (K = 3), cyclobutadiene (K = 4), and benzene (K = 2). To illustrate, 
consider complex 11 as follows: 

= K(l l )  = K(1) + K(8) = 2 + 3 = 5. 

We denote the molecular graphs of e thene  (L2), allyl (/_.3), butadiene (/_.4), cyclo- 
butadiene (Co), and benzene (C 6) by their standard graph-theoretical designations. Even 
carbon polyene side chains on a ring system do not change the K value of the fing, as 
can be noted by comparing 1 versus 6 and tricarbonyl(r/-cyclobutadiene)iron versus 5. 
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[Fe(CO)3]2(n~,~~-CI~HIo) 

= Xa(X ' - 10X '  + 3 3 X '  - 37X 2 + 4) - 4X(X 7 - 8X S + 2 0 X '  - 15X) + 4(X 6 - 7 X  4 + 15X 2 - 9)  

= X I* - 1 4 X '  + 69X « - 145X 4 + 124X ~ - 36  

+ 0 . 8 1 3 7 1  

+ 0 .93680  

+ 1.65789 

+ 1 .95868 

+ 2 .42389  

F i g .  5 .  D e t e r m i n a t i o n  o f  e i g e n v a l u e s  b y  m i r r o r  p l a n e  f r a g m e n t a t i o n .  

The K value of the acene complexes is given by K(acene) = 3r 6 - 1, as can be seen by 
comparing 1, 11, and 19. Another representative application of this equation gives 
K(25) = K(19) + K ( l l )  = K(8).K(C10Hs) + K(1).K(C6) = 13, where the first equality 
was obtained by operaüng on edge b and the second by operating simultaneously on 
edges h and p of 25. As a final example, consider 14: K(14) = -K(2) + K(TCCBI) 
= -1  + 4 = 3, where the minus sign is the result of  operating on the edge (e) of  the anti- 
aromatic cyclooctatetraene ring. Note that in these examples, we avoided operaüng on 
the negative weighted edges associated with the attached tricarbonyliron moiety. 

4. Eigenvalues by embedding 

A molecule possessing a subset of  eigenvalues found in another molecule is said 
to be subspectrally related to it [2,18]. If a smaUer molecule can be embedded onto a 
larger molecule, then the eigenvalues of the smaUer one will be found among the 
eigenvalues of  the larger one [2,19]. To embed a fragment onto an altemant molecule, 
(a) all atoms connected directly to the fragment must be nodes (have zero coefficients 
in the corresponding eigenvectors), (b) on the other side of  each of  these nodes there will 
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be a repetition of  the fragment with the opposite sign, and (c) other branches at these 
nodes will also be nodes. Common embedding fragments include ethene (e = + 1.0ft), 
allyl (e = + q-2fl), 1, 3-butadiene [e = +0.5(q5 + 1)], and pentadienyl (e = +1.0, +,f3). 
Mixed embedding requires that the different fragments have some common eigen- 
values, like ethene and pentadienyl (e = + 1.0). In this work, mixed embedding with the 
fragments shown in fig. 4 was observed. Tricarbonyl(r/4-butadiene)iron and the metal 
complexes 3, 9, 10, 12, and 17 (fig. 2) all am embeddable by ethene and have, therefore, 
eigenvalues of  e = + 1 .O B. Mixed embedding of butadiene and G 1 in fig. 4 occurs in the 
metal complexes of  8, 10, 19, and 20, which have eigenvalues of  e = +0.5(~15 + 1)/3. 
For allyl, G z, or mixed allyl and G 2 embedding to be possible, the tail coefficient or 
K = CSC of  a test structure must  be divisible by 2. Mixed aUyl and G 2 embedding of 
7 (K = 4) and G z embedding of 21 (K = 2) occurs; since there am two distinct G 2 
embeddings on 21, it is doubly degenerate in the eigenvalues of  e = + r-2fl. For 
pentadienyl, G 2, or mixed pentadienyl and G z embedding to occur, the test structure 
must have a K value divisible by 3. Two distinct mixed embeddings of  pentadienyl and 
G z occur on 14 (K = 3), which is doubly degenerate in eigenvalues "of e = +q3fl. 
Molecular graphs that have a doubly degenemte eigenvalue subset can have any vertex 
atom deleted, replaced, or augrnented by a polyene subsütuent, giving successor 
molecular  graphs still retaining this eigenvalue subset once. The tricarbonyliron 
complexes of  s-cis- 1, 3-butadiene and cyclobutadiene are doubly degenerate in eigen- 
values of e = +,4~, :i:~/-3B and e = +~/-2, +~t~ß, respectively, and deletion of  a carbon 
vertex from either can generate molecular graph G. in fig. 4, which h a s e  = +~/2, +~3ß.  
Attachrnent of  a vinyl substituent to tricarbonyl(r/ä-cyclobutadiene)imn gives 5, which 
has e = +,~r~fl. Complexes 8, 10, 20, and 26, which are mixed embeddable by G x and 
L 4, all have the same HOMO = 0.6180B value, and 24 can be embedded by 1 and both 
have the same HOMO = 0.3473fl value. 

5. A E  as a relative measure of reaction spontaneity 

It is assumed in this work that the reaction of a polyene to form a tricärbonyliron 
complex will have its relative spontaneity govemed principaUy by the change in 
~-electronic delocalization energy. Thus, in the foUowing reaction scheme AE x 
= E [po lyene -Fe (CO)  3] - E [polyene] is a relative measure of  the tendency for the 
reaction to take place: 

polyene + Fe(CO)3 ---> polyene-Fe(CO) r 

There am two basic kinds of (tetrahapto-polyene)metal complexes. These are 
typified by the known s-cis-1, 3-butadiene and cyclobutadiene complexes of tri- 
carbonyliron (fig. 1). The large difference in the AE x values between tricarbonyl(r/4- 
butadiene)iron (AE x = 4.456/3) and tricarbonyl(r/4-cyclobutadiene)iron ( A E  = 5.65713) 
is consistent with the three-dimensional aromatic pmperties [20] exhibited by the latter 
metal complex [9]. The carbon-carbon bond lengths in tficarbonyl(r/4-cyclobutadiene)iron 
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are all equal, and this complex is known to undergo electrophilic substituüon and to 
resist Diels-Alder reactions. Of all the Fe(r/4-C10H~)(CO)3 isomers (fig. 2), only 14 is 
known, which is consistent with its larger A E  value [21]. 

Consider the isomer group 1 to 5. Only 3 and 5 have been synthesized [21]. The 
hypotheücal reacüon of vinylcyclobutadiene with Fe(CO)3 should lead to 5 over 4 
because of the larger A E  for the former. Similarly, 1, 2-dimethylenylcyclobutadiene 
would preferentially form 3 over 2 because of its larger A E .  Since the synthesis of 1 
and 11 has not been accomplished, whereas 19 has been synthesized, it appears that for 
tetrahapto complexes of tricarbonyliron to form, A E  needs to be greater than 3.9. In the 
isomer group of 6 to 10, only 7, 9, and 10 have been prepared. Again, according to the 
relative A E  values, Fe(CO) 3 should react with ortho-quinodimethane to preferentially 
form 9 over 8. Similarly, 7 should preferentially form over 6. In the isomer group 11 
to 14, only 13 and 14 are known to exist, which is consistent with their higher A E  
values. Isomers 15 to 18 are all k~own to exist, although 17 is only a fluxional transient 
species of 18. The bis-tricarbonyliron complexes of 20 to 23 are known, hut 24 is not 
known, which is consistent with its A E  being below 3.9. The synthesis of tricarbonyl- 
iron complexes of 25 to 30 has been reported. Complex 25 is an example of a carcino- 
gen, and complexes 28 to 30 are examples of non-altemant structures. Complex 27 has 
the second largest A E  value in fig. 2 and can be regarded as the analog of triphenylene, 
which is the most stable ClsH12 benzenoid isomer, the uncomplexed hydrocarbon 
corresponding to 27 is not known and is predicted to be reactive since its HOMO value 
is 0.0835fl and its E = 21.6928fl, which are smaller than those of its synthesized 
isomers. Similarly, 26 is the electronic analog of naphthalene, and its complexation with 
another tricarbonyliron leads to ferraindene coproducts that result from cyclobutadiene 
ring rupture. 

The HOMO values for the tricarbonyliron complexes given in fig. 2 should be 
useful in predicting the relative ease of electrophilic and Diel s-Alder reactions of their 
associated organic moieties. It was thought that the Diels-Alder reaction (400 °C) of 
9 with methyl propynoate is preceded by dissociation to o-quinodimethane. However, 
isomerization 9 to 8 followed by Diels-Alder condensafion and subsequent decom- 
position of the resulüng tricarbonyliron complex is also plausible. In fact, this latter is 
even more reasonable in the light of the observation that 9 undergoes pyrolysis to benzo- 
cyclobutene of 500 °C. The more facile Friedel-Crafts acetylation of 9 over benzene 
is consistent with its HOMO value of 0.71M6fl versus 1.0 B for benzene. The Fe(CO) 3 
group in acetylergosterol complexes successfully protects the conjugated diene unit, 
aUowing reactions of the free double bond on the 17-side chain. This result suggests that 
the HOMO value for the tricarbonyl(r/4-butadiene)iron unit should be equal to or greater 
than the HOMO value of 1.0B for ethene. 

6. Summary 

The diene-tricarbonyliron complexes consfitute a very large class of organoiron 
compounds. While reviewing polycyclic member compounds of this chemical class, we 
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T a b l e  3 

C h a r a c t e r i s t i c  p o l y n o m i a l s  o f  ~ t - h y d r o c a r b o n - i r o n - t r i c a r b o n y l  c o m p l e x e s  

Cpd P ( G ; X ) - X  N + qx  N - 2  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14  

15 

16 

17 

18 

19 

2 0  

21 

2 2  

23  

2 4  

25  

2 6  

27  

28  

2 9  

3 0  

+ 3 3 X  4 - 3 7 X  2 + 4 

+ 3 1 X  4 -  3 1 X  2 + 1 

+ 2 9 X  4 - 2 4 X  2 + 4 

+ 3 0 X  4 - 2 8 X  2 + 4 

+ 3 3 X  4 - 4 2 X  2 + 16 

+ 5 1 X  6 - 9 0 X  4 + 5 6 X  2 - 4 

+ 5 1 X  6 - 9 4 X  4 + 7 2 X  2 - 16 

+ 5 0 X  6 - 8 4 X  4 + 4 9 X  2 - 9 

+ 5 0 X  6 - 8 8 X  4 + 6 5 X  2 - 16 

+ 5 2 X  6 - 9 7 X  « + 7 2 2 2  - 16 

+ 8 5 X  a _ 2 2 8 X  6 + 2 9 4 X  a - 1 6 1 X  2 + 25  

+ 8 1 X  a - 1 9 0 X  6 + 1 8 6 X  4 - 7 2 X  2 + 9 

+ 8 3 X  s - 2 0 8 X  6 + 2 3 1 X  4 - 9 4 X  2 + 9 

+ 

+ 

+ 

-b 

+ 

-t- 

+ 

+ 

+ 

+ 

+ 

+ 2 6 4 X  16 

+ 6 0 X  « _ 

+ 2 1 9 X  14 

+ 3 2 X  4 + 

+ 1 1 4 X  1° 

+ 1 8 2 X  12 

+ 1 8 0 X  + 

8 5 X  s - 2 2 9 X  6 + 2 9 5 X  4 - 1 5 0 X  2 + 9 

1 1 3 X  1° - 3 7 9 X  s + 6 8 5 X  6 - 6 5 6 X  4 + 3 0 1 X  2 - 4 9  

1 1 4 X  1° - 3 8 6 X  s + 7 0 1 X  6 - 6 6 8 X  4 + 3 0 1 X  2 - 4 9  

1 1 4 X  1° - 3 8 5 X  s + 6 9 2 X  6 - 6 3 9 X  4 + 2 5 9 X  2 - 25  

1 1 3 X  1° - 3 7 8 X  8 + 6 7 9 X  6 - 6 4 4 X  4 + 2 9 2 X  2 - 4 9  

1 6 2 X  12 - 6 8 7 X  l °  + 1 6 4 3 X  8 - 2 2 1 9 X  6 + 1 5 9 7 X  « - 5 3 2 X  2 + 64  

9 9 X  s _ 2 9 8 X  6 + 4 4 7 X  4 _ 3 0 0 X  2 + 64  

1 0 0 X  8 _ 3 0 8 X  6 + 4 8 0 X  4 _ 3 3 6 X  2 + 64  

1 2 9 X  1° - 4 7 4 X  s + 9 5 2 X  6 - 1 0 2 4 X  4 + 5 3 1 X  2 - 100  

9 8 X  8 _ 2 8 9 X  6 + 4 2 3 X  4 _ 2 8 1 X  2 + 64  

2 4 2 X  1« _ 1 3 3 4 X  12 + 4 3 7 3 X  l °  _ 8 6 7 0 X  s + 1 0 0 9 3 X  6 - 6 3 5 6 X  4 + 1 8 2 8 X  2 - 144  

_ 1 5 4 2 X  1« + 5 4 7 6 X  12 _ 1 2 2 3 3 X  lo + 1 7 1 8 4 X  s - 1 4 7 3 6 X  6 + 7 2 3 2 X  4 - 1 7 9 7 X  2 + 169  

1 2 2 X  4 - 1 0 4 X  2 - 25  

- 1 1 3 2 X  12 + 3 4 9 1 X  l°  - 6 6 3 5 X  8 + 7 7 3 4 X  6 - 5 3 0 7 X  4 + 1 9 4 2 X  2 - 2 8 9  

2 X  3 - 3 6 X  2 - 6 X  + 9 

- 3 8 4 X  8 + 6 8 0 X  6 + 2 X  5 - 5 9 6 X  4 - 1 0 X  3 + 2 0 9 X  2 + 1 2 X  - 16 

_ 8 4 2 X  lo + 4 X  9 + 2 2 3 X  8 _ 4 4 X  7 _ 3 4 1 4 X  6 + 1 7 6 X  5 + 2 7 7 7 X  4 - 3 0 0 X  3 _ 9 8 1 X  2 

64  

have shown how to rapidly determine their Hückel molecular parameters using 
chemical graph theory without the aid of a computer or group theory. This WOl~ 
contributes further toward the comprehensive application of graph theory in the deter- 
mination of the characterisüc polynomials and eigenvalues of molecules. 

It has be.en shown that a difference in the electronic p~ energy of the complex 
and reactant polyene (AE)  reliably predicts the chemistry of diene-tricarbonyliron 
complexes. These results are in complete agreement with localization energy calcu- 
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lations [22] associated with the polyene reactant and with structure-resonance theory 
calculations associated with the complex [10]. The critical value of AE x below which 
synthesis of a diene-tricarbonyliron complex appears to be difficult is -3.9fl. 
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